Abstract
SummaryMaps of the distribution of epidemiological data often ignore surveillance error or possible correlations between missing information and outcomes. We analyse presence–absence data at the household level (12050 points) of a disease-carrying insect in Mariano Melgar, Peru, collected as part of the Arequipan Ministry of Health's efforts to control Chagas disease. We construct a Bayesian hierarchical model to locate regions that are vulnerable to under-reporting due to surveillance error, accounting for variability in participation due to infestation status. The spatial correlation in the data allows us to identify relative inspector sensitivity and to elucidate the relationship between participation and infestation. We show that naive estimates of prevalence would be biased by surveillance error and missingness at random assumptions. We validate our results through simulations and observe how randomized inspector assignments may improve prevalence estimates. Our results suggests that bias due to imperfect observations and missingness at random can be assessed and corrected in prevalence estimates of spatially auto-correlated binary variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series A: Statistics in Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.