Abstract

BackgroundStudies of host-parasite interactions have the potential to provide insights into the ecology of both organisms involved. We monitored the movement of sucking lice (Lemurpediculus verruculosus), parasites that require direct host-host contact to be transferred, in their host population of wild mouse lemurs (Microcebus rufus). These lemurs live in the rainforests of Madagascar, are small (40 g), arboreal, nocturnal, solitary foraging primates for which data on population-wide interactions are difficult to obtain. We developed a simple, cost effective method exploiting the intimate relationship between louse and lemur, whereby individual lice were marked, without removal from their host, with an individualized code, and tracked throughout the lemur population. We then tested the hypotheses that 1) the frequency of louse transfers, and thus interactions, would decrease with increasing distance between paired individual lemurs; 2) due to host polygynandry, social interactions and hence louse transfers would increase during the onset of the breeding season; and 3) individual mouse lemurs would vary in their contributions to the spread of lice.ResultsWe show that louse transfers involved 43.75% of the studied lemur population, exclusively males. Louse transfers peaked during the breeding season, perhaps due to increased social interactions between lemurs. Although trap-based individual lemur ranging patterns are restricted, louse transfer rate does not correlate with the distance between lemur trapping locales, indicating wider host ranging behavior and a greater risk of rapid population-wide pathogen transmission than predicted by standard trapping data alone. Furthermore, relatively few lemur individuals contributed disproportionately to the rapid spread of lice throughout the population.ConclusionsUsing a simple method, we were able to visualize exchanges of lice in a population of cryptic wild primates. This method not only provided insight into the previously unseen parasite movement between lemurs, but also allowed us to infer social interactions between them. As lice are known pathogen vectors, our method also allowed us to identify the lemurs most likely to facilitate louse-mediated epidemics. Our approach demonstrates the potential to uncover otherwise inaccessible parasite-host, and host social interaction data in any trappable species parasitized by sucking lice.

Highlights

  • Studies of host-parasite interactions have the potential to provide insights into the ecology of both organisms involved

  • We found no evidence that capture rate was related to mean louse intensity or the percentage of marked lice a host would eventually transfer, with only 19% of variation in the former and 21% in the latter being explained by these variables

  • In conclusion, this study capitalizes on the biological features of lice to gather otherwise inaccessible social interaction and population parasite ecology data on its host, M. rufus

Read more

Summary

Introduction

Studies of host-parasite interactions have the potential to provide insights into the ecology of both organisms involved. We monitored the movement of sucking lice (Lemurpediculus verruculosus), parasites that require direct host-host contact to be transferred, in their host population of wild mouse lemurs (Microcebus rufus). These lemurs live in the rainforests of Madagascar, are small (40 g), arboreal, nocturnal, solitary foraging primates for which data on population-wide interactions are difficult to obtain. The hosts studied were brown mouse lemurs (Microcebus rufus) of southestern Madagascar’s tropical montane rainforests which, at 40 g, are one of the world’s smallest primates They are arboreal, noctural and cryptic, which has impeded collection of data on their social interactions despite advances in relevant technology. Though some chewing lice are known to transfer between hosts phoretically by attaching to winged hippoboscid flies [7] and other parasites can transfer fomitically via inanimate objects [8], the highly specialized features of sucking lice preclude the use of these transfer routes [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.