Abstract
We introduce maps of Cauchy–Green strain tensor eigenvalues to barycentric coordinates to quantify and visualize the full geometry of three-dimensional deformation in stationary and non-stationary fluid flows. As a natural extension of Lagrangian coherent structure diagnostics, which provide separate scalar fields and a one-dimensional quantification of fluid deformation, our barycentric mapping visualizes the role of all three Cauchy–Green eigenvalues (or rates of stretching) in a single plot through a novel stretching coordinate system. The coordinate system is based on the distance from three distinct limiting states of deformation that correspond with the dimension of the underlying invariant manifolds. One-dimensional axisymmetric deformation (sphere to rod deformation) corresponds to one-dimensional unstable manifolds, two-dimensional axisymmetric deformation (sphere to disk deformation) corresponds to two-dimensional unstable manifolds and the rare three-dimensional isometric case (sphere to sphere translation and rotation) corresponds to shear-free elliptic Lagrangian coherent structures (LCSs). We provide methods to visualize the degree to which fluid deformation approximates these limiting states, and tools to quantify differences between flows based on the compositional geometry of invariant manifolds in the flow. We also develop a simple analogue for bilinearly representing and plotting both rates of stretching and rotation as a single vector. As with other LCS techniques, these diagnostics define frame-indifferent material features in the flow. We provide multiple computed examples of LCS and momentum transport barriers, and show advantages over other coherent structure diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.