Abstract

We have previously shown that ruthenium red (RuR) binds to the voltage-dependent anion channel (VDAC) in the outer mitochondrial membrane, decreasing channel conductance and protecting against apoptotic cell death. In this report, we define the murine and yeast VDAC1 amino acid residues involved in the interaction with RuR. Binding of RuR to bilayer-reconstituted mVDAC1 and the resulting channel closure was inhibited upon mutation of specific VDAC1 residues. RuR protection against cell death, as induced by overexpression of native or mutated mVDAC1, was also diminished upon mutation of these amino acids. Moreover, RuR-mediated inhibition of cytochrome c release normally induced by staurosporine was not observed in cells expressing mutants VDAC1. We found that four glutamate residues, two each located in the first and third mVDAC1 cytosolic loops, are required for the interaction of VDAC1 with RuR and subsequent protection against cell death. Similar results were obtained with Q72E-yeast VDAC1, except that only three glutamate residues, located in two cytosolic loops were required. As a hexavalent reagent, RuR is expected to bind to more than one negatively charged group. Our results thus clearly indicate that RuR protects against cell death via a direct interaction with VDAC1 to inhibit cytochrome c release and subsequent cell death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.