Abstract

Treating cattle with endectocide is a longstanding veterinary practice to reduce the load of endo and ectoparasites, but has the potential to be added to the malaria control and elimination toolbox, as it also kills malaria mosquitoes feeding on the animals. Here we used openly available data to map the areas of the African continent where high malaria prevalence in 2–10 year old children coincides with a high density of cattle and high density of the partly zoophilic malaria vector Anopheles arabiensis. That is, mapping the areas where treating cattle with endectocide would potentially have the greatest impact on reducing malaria transmission. In regions of Africa that are not dominated by rainforest nor desert, the map shows a scatter of areas in several countries where this intervention shows potential, including central and eastern sub-Saharan Africa. The savanna region underneath the Sahel in West Africa appears as the climatic block that would benefit to the largest extent from this intervention, encompassing several countries. West Africa currently presents the highest under-10 malaria prevalence and elimination within the next twenty years cannot be contemplated there with currently available interventions alone, making the use of endectocide treated cattle as a complementary intervention highly appealing.

Highlights

  • Malaria continues to be one of the ten leading causes of death in low-income countries[1], with 92% of all new malaria cases in 2017 being confined to the WHO African Region[2]

  • Given the potential added value of endectocide-treated cattle to reduce malaria transmission and the need for evidence-based priority-setting in order to optimize vector control, this study aims to identify the regions of Africa where a high malaria burden coincides with high cattle densities in the presence of a problematic vector with important feeding plasticity: Anopheles arabiensis

  • Controlling residual malaria transmission needs a comprehensive approach, integrating interventions that target the various mosquito behaviors[11] and using measures that go beyond personal protection[12]

Read more

Summary

Introduction

Malaria continues to be one of the ten leading causes of death in low-income countries[1], with 92% of all new malaria cases in 2017 being confined to the WHO African Region[2]. The core vector control interventions (long-lasting insecticidal nets, or LLINs, and indoor residual spraying, or IRS) contributed to approximately 78% of the 663 million cases averted from 2000 to 20156 These interventions have been highly effective as they reduce daily mosquito survival rates as well as rates of biting on humans, two parameters that drive onward malaria transmission[7] due to their importance in determining vectorial capacity What LLINs and IRS interventions do not effectively address are mosquito behaviors that allow them to avoid contact with insecticides such as outdoor biting and resting, early exiting from houses after feeding, biting at dusk/dawn or at times when humans are not protected by nets and partial feeding upon livestock[10,11]. The role of livestock as a source of blood-meal for arthropod vectors of non-zoonotic human diseases has been shown to influence epidemiologic patterns of human diseases, including malaria[14]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.