Abstract

When a single DNA molecule is stretched beyond its normal contour length, a force-induced melting transition is observed. Ethidium binding increases the DNA contour length, decreases the elongation upon melting, and increases the DNA melting force in a manner that is consistent with the ethidium-induced changes in duplex DNA stability known from thermal melting studies. The DNA stretching curves map out a phase diagram and critical point in the force-extension-ethidium concentration space. Intercalation occurs between alternate base pairs at low forces and between every base pair at high forces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call