Abstract

The rare organocopper(II) complex [Cu(Me6tren)(CH2CN)]+ (Me6tren = tris(2-(dimethylamino)ethyl)amine) has emerged as an important model of potential byproducts in copper-catalyzed atom transfer radical polymerization. This complex has been generated by controlled potential electrolysis of [Cu(Me6tren)(NCMe)]2+ in the presence of BrCH2CN. Time-resolved UV-vis and continuous wave and pulse electron paramagnetic resonance (EPR) spectra identified [Cu(Me6tren)Br]+ as an intermediate. Hyperfine sublevel correlation and electron nuclear double resonance spectroscopy of samples at different timepoints reveal signals that are assigned to a C-bound cyanomethylate ligand, with distinct 14N and 1H hyperfine coupling constants in comparison with the corresponding N-bound acetonitrile and bromido complexes. The experimental EPR data are supported by density functional theory calculations to understand how the geometries of the species involved produce distinct spectroscopic signatures, and a clear picture of how this unusual organocopper(II) complex is formed has emerged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call