Abstract

We present new near-infrared spectroscopic observations of the outer edges of the young stellar cluster around the supermassive black hole at the Galactic center. The observations show a break in the surface-density profile of young stars at approximately 13 arcsec (0.52 pc). These observations spectroscopically confirm previous suggestions of a break based on photometry. Using Gemini North's Near-Infrared Integral Field Spectrometer (NIFS) we are able to detect and separate early- and late-type stars with a 75% completeness at Ks = 15.5. We sample a region with radii between 7" to 23" (0.28 pc to 0.92 pc) from Sgr A*, and present new spectral classifications of 144 stars brighter than Ks = 15.5, where 140 stars are late-type (> 1 Gyr) and only four stars are early-type (young, 4-6 Myr). A broken power-law fit of the early-type surface-density matches well with our data and previously published values. The projected surface-density of late-type stars is also measured and found to be consistent with previous results. We find that the observed early-type surface-density profile is inconsistent with the theory of the young stars originating from a tightly bound infalling cluster, as no significant trail of young stars is found at radii above 13". We also note that either a simple disk instability criterion or a cloud-cloud collision could explain the location of the outer edge, though we lack information to make conclusive remarks on either alternative. If this break in surface-density represents an edge to the young stellar cluster it would set an important scale for the most recent episode of star formation at the Galactic center.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.