Abstract

Nuclear properties across the chart of nuclides are key to improving and validating our understanding of the strong interaction in nuclear physics. We present high-precision mass measurements of neutron-rich Fe isotopes performed at the TITAN facility. The multiple-reflection time-of-flight mass spectrometer (MR-ToF-MS), achieving a resolving power greater than 600000 for the first time, enabled the measurement of Fe63–70, including first-time high-precision direct measurements (δm/m≈10−7) of Fe68–70, as well as the discovery of a long-lived isomeric state in Fe69. These measurements are accompanied by both mean-field and ab initio calculations using the most recent realizations which enable theoretical assignment of the spin-parities of the Fe69 ground and isomeric states. Together with mean-field calculations of quadrupole deformation parameters for the Fe isotope chain, these results benchmark a maximum of deformation in the N=40 island of inversion in Fe and shed light on trends in level densities indicated in the newly refined mass surface.Received 19 July 2021Revised 24 December 2021Accepted 16 March 2022DOI:https://doi.org/10.1103/PhysRevC.105.L041301©2022 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasBinding energy & massesNuclear structure & decaysRare & new isotopesProperties59 ≤ A ≤ 89TechniquesAb initio calculationsMean field theoryTime-of-flight mass spectrometryNuclear Physics

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.