Abstract
The meltdown test is an efficient tool widely and commonly used to characterize structural changes in frozen desserts resulting from different ingredients and processing conditions. The meltdown is commonly determined by a gravimetric test, and it is used to obtain the onset (Mon), rate (Mrate), and maximum (MMax) meltdown. However, these parameters are calculated ambiguously due to the inconsistency in the methodology. This work aims at modeling the meltdown curves (weight vs time) of different commercial samples (36 commercial samples). Samples of commercial frozen desserts (40-60 g) was placed on a 304 stainless wire cloth (1.50 mm opening size and 52% open area) suspended about 15 cm above of an analytical balance, and the dripped portion of the melted ice cream was continuously recorded throughout the duration of the test. The meltdown test was conducted at room temperature. Each meltdown test generated more between 3000 to 4000 data points and was modeled using 4 equations: The logistic model, the Gompertz model, the Richard model, and the Hill model. All the meltdown curves were sigmoidal in shape, regardless of the type of frozen dessert. The experimental meltdown curves were adequately represented by the Logistic model, judging by several criteria (R2 = 0.999, adjusted RAdj2 = 0.999, Akaike probability = 6582, and F-value = 1.88 × 106). Thus, the Logistic model was shown to be an effective tool for predicting the meltdown curves of frozen desserts, and it can be used to define unambiguously the onset, rate, and maximum meltdown. Moreover, a dimensionless response (meltdown behavior, MBe) that combines Mon, Mrate, and MMax was developed and used for mapping the meltdown of different commercial frozen desserts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.