Abstract

The alignment of olivine crystals is considered as the dominant source of seismic anisotropy in the subcrustal lithosphere and asthenosphere. Different components of large-scale anisotropy can be traced in depth distributions of the radial and azimuthal anisotropy of surface waves. We propose a global model of the lithosphere–asthenosphere boundary (LAB) as a transition between a ‘frozen-in’ anisotropy in the lithosphere to anisotropy in the sublithospheric mantle related to the present-day flow. Due to different orientations of velocity maxima in the anisotropic subcrustal lithosphere and the asthenosphere, the velocity contrast related to the LAB can increase in particular directions. Because of their long wavelengths and horizontal propagation, surface waves suffer from poor lateral resolution. However, surface waves with various wavelengths allow us to map gross features of the LAB with a good vertical resolution. We estimate depths to the LAB to be between 200 and 250 km for the Precambrian shields and platforms, around 100 km for the Phanerozoic continental regions and 40–70 km beneath oceans from the world-wide depth distribution of the radial and azimuthal anisotropy of surface waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.