Abstract

Mapping the land-cover distribution in arid and semiarid urban landscapes using medium spatial resolution imagery is especially difficult due to the mixed-pixel problem in remotely sensed data and the confusion of spectral signatures among bare soils, sparse density shrub lands, and impervious surface areas (ISAs hereafter). This article explores a hybrid method consisting of linear spectral mixture analysis (LSMA), decision tree classifier, and cluster analysis for mapping land-cover distribution in two arid and semiarid urban landscapes: Urumqi, China, and Phoenix, USA. The Landsat Thematic Mapper (TM) imagery was unmixed into four endmember fraction images (i.e. high-albedo object, low-albedo object, green vegetation (GV), and soil) using the LSMA approach. New variables from these fraction images and TM spectral bands were used to map seven land-cover classes (i.e. forest, shrub, grass, crop, bare soil, ISA, and water) using the decision tree classifier. The cluster analysis was further used to modify the classification results. QuickBird imagery in Urumqi and aerial photographs in Phoenix were used to assess classification accuracy. Overall classification accuracies of 86.0% for Urumqi and 88.7% for Phoenix were obtained, much higher accuracies than those utilizing the traditional maximum likelihood classifier (MLC). This research demonstrates the necessity of using new variables from fraction images to distinguish between ISA and bare soils and between shrub and other vegetation types. It also indicates the different effects of spatial patterns of land-cover composition in arid and semiarid landscapes on urban land-cover classification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call