Abstract

Particle therapy is a growing cancer treatment modality worldwide. However, there still remains a number of unanswered questions considering differences in the biological response between particles and photons. These questions, and probing of biological mechanisms in general, necessitate experimental investigation. The Infrastructure in Proton International Research (INSPIRE) project was created to provide an infrastructure for European research, unify research efforts on the topic of proton and ion therapy across Europe, and to facilitate the sharing of information and resources. This work highlights the radiobiological capabilities of the INSPIRE partners, providing details of physics (available particle types and energies), biology (sample preparation and post-irradiation analysis), and researcher access (the process of applying for beam time). The collection of information reported here is designed to provide researchers both in Europe and worldwide with the tools required to select the optimal center for their research needs. We also highlight areas of redundancy in capabilities and suggest areas for future investment.

Highlights

  • There is a growing investment in proton and heavy ion therapy worldwide, with 89 proton centers and 12 carbon centers currently in clinical operation [according to the Particle Therapy Co-Operation Group (PTCOG)] [1]

  • Whilst the beam time is largely accessible for European researchers, up to 30% of the hours are available to researchers outside the EU

  • We aim to provide comprehensive information on the facilities available across INSPIRE

Read more

Summary

Introduction

There is a growing investment in proton and heavy ion therapy worldwide, with 89 proton centers and 12 carbon centers currently in clinical operation [according to the Particle Therapy Co-Operation Group (PTCOG)] [1]. Despite the increasing adoption of particle therapy there remains a number of unanswered questions about this relatively new treatment modality [3]. These questions range widely in scope and include physical (e.g., range uncertainties or organ motion), biological (e.g., uncertainties in relative biological effectiveness and lack of clinically relevant in vivo data), and societal aspects (e.g., cost-effectiveness and radiotherapy demand) [4]. Access and utilization of this beam time can be difficult due to a lack of supply and/or funding Rectifying this situation requires targeted efforts from both researchers and funders alike

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.