Abstract

Glioblastoma (GBM) is the most aggressive glial tumor, where ion channels, including KCa1.1, are candidates for new therapeutic options. Since the auxiliary subunits linked to KCa1.1 in GBM are largely unknown we used electrophysiology combined with pharmacology and gene silencing to address the functional expression of KCa1.1/β subunits complexes in both primary tumor cells and in the glioblastoma cell line U-87 MG. The pattern of the sensitivity (activation/inhibition) of the whole-cell currents to paxilline, lithocholic acid, arachidonic acid, and iberiotoxin; the presence of inactivation of the whole-cell current along with the loss of the outward rectification upon exposure to the reducing agent DTT collectively argue that KCa1.1/β3 complex is expressed in U-87 MG. Similar results were found using human primary glioblastoma cells isolated from patient samples. Silencing the β3 subunit expression inhibited carbachol-induced Ca2+ transients in U-87 MG thereby indicating the role of the KCa1.1/β3 in the Ca2+ signaling of glioblastoma cells. Functional expression of the KCa1.1/β3 complex, on the other hand, lacks cell cycle dependence. We suggest that the KCa1.1/β3 complex may have diagnostic and therapeutic potential in glioblastoma in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.