Abstract

ObjectivesTo map Functional Assessment of Cancer Therapy-General (FACT-G) and Functional Assessment of Cancer Therapy-Colorectal (FACT-C) subscale scores onto six-dimensional health state short form (derived from short form 36 health survey) (SF-6D) preference-based values in patients with colorectal neoplasm, with and without adjustment for clinical and demographic characteristics. These results can then be applied to studies that have used FACT-G or FACT-C to predict SF-6D utility values to inform economic evaluation. MethodsOrdinary least square regressions were estimated mapping FACT-G and FACT-C onto SF-6D by using cross-sectional data of 537 Chinese subjects with different stages of colorectal neoplasm. Mapping functions for SF-6D preference-based values were developed separately for FACT-G and FACT-C in four sequential models for addition of variables: 1) main-effect terms, 2) squared terms, 3) interaction terms, and 4) clinical and demographic variables. Predictive performance in each model was assessed by the R2, adjusted R2, predicted R2, information criteria (Akaike information criteria and Bayesian information criteria), the root mean square error, the mean absolute error, and the proportions of absolute error within the threshold of 0.05 and 0.10. ResultsModels including FACT variables and clinical and demographic variables had the best predictive performance measured by using R2 (FACT-G: 59.98%; FACT-C: 60.43%), root mean square error (FACT-G: 0.086; FACT-C: 0.084), and mean absolute error (FACT-G: 0.065; FACT-C: 0.065). The FACT-C–based mapping function had better predictive ability than did the FACT-G–based mapping function. ConclusionsModels mapping FACT-G and FACT-C onto SF-6D reached an acceptable degree of precision. Mapping from the condition-specific measure (FACT-C) had better performance than did mapping from the general cancer measure (FACT-G). These mapping functions can be applied to FACT-G or FACT-C data sets to estimate SF-6D utility values for economic evaluation of medical interventions for patients with colorectal neoplasm. Further research assessing model performance in independent data sets and non-Chinese populations are encouraged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.