Abstract

In this study, we use ultrafast time-resolved absorption and fluorescence spectroscopies to examine A. marina phycobilisomes isolated from cells grown under light of different intensities and spectral regimes. Investigations were performed at room temperature and at 77 K. The study demonstrates that if complexes are stabilized by high phosphate (900 mM) buffer, there are no differences between them in temporal and spectral properties of fluorescence. However, when the complexes are allowed to disassemble into trimers in low phosphate (50 mM) buffer, differences are clearly observed. The fluorescence properties of intact or disassembled phycobilisomes from cells grown in low intensity white light are unresponsive to variation in phosphate concentration. This antenna complex was further studied in detail with application of femtosecond time-resolved absorption at room temperature. Combined spectroscopic and kinetic analysis of time-resolved fluorescence and absorption data of this antenna allowed us to identify spectrally different forms of phycocyanobilins and to propose a simplified model of how they could be distributed within the phycobilisome structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call