Abstract

AbstractThe Crab pulsar has a striking radio profile, dominated by two pulse components (the main pulse and interpulse) which are comprised of giant pulses. These pulses are randomly occurring, they extend to extremely high flux densities, and are closely aligned with emission across the entire electromagnetic spectrum. The Crab, like many pulsars, exhibits scintillation – a pattern in frequency and time arising from interfering scattered images. The pattern varies with location, with the physical scale over which it changes by order unity corresponding to the spatial resolution of the scattering surface. For the Crab, the scattering is in the nebula and the estimated spatial resolution is of order the light cylinder radius. Comparing scintillation spectra of the two components, we infer a difference in physical location of the same order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.