Abstract
We provide a detailed microscopic characterization of the influence of defects-induced disorder onto the Dirac spectrum of three dimensional topological insulators. By spatially resolved Landau-levels spectroscopy measurements, we reveal the existence of nanoscale fluctuations of both the Dirac point energy as well as of the Dirac-fermions velocity which is found to spatially change in opposite direction for electrons and holes, respectively. These results evidence a scenario which goes beyond the existing picture based on chemical potential fluctuations. The findings are consistently explained by considering the microscopic effects of local stain introduced by defects, which our model calculations show to effectively couple to topological states, reshaping their Dirac-like dispersion over a large energy range. In particular, our results indicate that the presence of microscopic spatially varying stain, inevitably present in crystals because of the random distribution of defects, effectively couple to topological states and should be carefully considered for correctly describing the effects of disorder.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.