Abstract

Recent experimental research has indicated that different multiple faults impose differing levels of objective and subjective difficulty on human troubleshooters. Technological advances suggest that systems are becoming more complex and integrated, in which case multiple components will fail. Operators will have to be able to deal with these more complex failures. In this paper we report field work conducted in order to build and substantiate a model of the factors influencing fault diagnosis in the field. By conducting field observations and by constructing concept maps, we investigated how expert troubleshooters handle the difficulty associated with diagnosing multiple faults. The troubleshooters were expert electronic technicians in departmental repair shops on a large university campus. The end product of the research is a model of fault diagnosis that is grounded in field data. Our results suggest that diagnostic difficulty arises from several factors: (1) organizational structure, (2) technicians' strategies for fault diagnosis, and (3) equipment design. The field observations and concept maps indicate that technicians approach the diagnostic task with standard, ritualistic methods that they have developed over years of experience. They generally go through two phases of troubleshooting: (1) the problem definition phase and (2) what we call the At-the-Equipment-TroubleShooting (AETS) phase. Technicians also reason about multiple failures in series, considering one simple explanation at a time. Our principal conclusion is that in real-world settings the three previously mentioned factors have evolved to avoid situations in which technicians must engage in prolonged functional reasoning. These findings will be used (1) to develop further the model of fault diagnosis, and (2) to guide future experimental investigations studying the influences of fault diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call