Abstract

We report a detailed and complete phase diagram for an aqueous mixture of oppositely charged gelling biopolymers, type B gelatin and κ-carrageenan (KC) at pH 7.0. The phase diagram is studied in the ionic strength-temperature coordinate by means of turbidity, rheological and differential scanning calorimetric measurements, and macroscopic phase compositional analysis. Seven phase regions are identified, including (I) compatible region, (II) electrostatically induced associative phase separation (EIAPS) region, (III) hydrogen bonding induced associative phase separation (HBIAPS) region, (IV) coexistence of EIAPS and HBIAPS, (V) segregative phase separation (SPS) region, (VI) coexistence of HBIAPS and SPS, and (VII) SPS trapped by gelation. The HBIAPS reported for the first time here is attributed to the extensive hydrogen bonding formation between gelatin and KC above their conformational transition temperatures, as probed by addition of urea and methylene blue as well as by 2D (1)H-(1)H NOESY NMR. NaCl is found to have dual effects on HBIAPS. The electrostatic complexation at lower ionic strength facilitates the formation of hydrogen bonds between gelatin and KC and hence the HBIAPS. It is believed that the local structural arrangement of gelatin molecules or the change in local solvent environment prior to triple helix formation during cooling enables the formation of hydrogen bonds with KC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.