Abstract

Accurately quantifying the architecture of lithium ion electrode particles in 3D is critical to understanding sub-particle lithium transport, rate limitations, and degradation mechanisms within lithium ion batteries. Most commercial positive electrode materials consist of polycrystalline particles, where intra-particle grains have a range of morphologies and orientations. Here, focused ion beam slicing in sequence with electron backscatter diffraction is used to accurately quantify intra-particle grain morphologies in 3D. The intra-particle grains are identified using convolution neural network segmentation and distinctly labeled. Efficient morphological characterization of the grain architectures is achieved. Bivariate probability density maps are developed to show correlative relationships between morphological grain descriptors. The implication of morphological features on cell performance, as well as the extension of this dataset to guide artificial generation of realistic particle architectures for 3D multi-physics models, is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call