Abstract

The performance of small animal PET for neuroreceptor studies in a psychopharmacological challenge paradigm is not yet well-described. Therefore, we used microPET and [11C]raclopride to map the availability of dopamine D2/3 receptors in brain of anesthetized rats, first in a baseline condition, and again after challenge with saline or d-amphetamine. Parametric maps of the specific binding (binding potential, pB) were calculated using a reference tissue input from cerebellum, and spatially normalized to a digitized stereotaxic coordinate system for rat brain. In volumes of interest (VOIs), the mean baseline pB (n=6) was 2.05 in dorsal striatum (caudate-putamen), and 1.34 in ventral striatum (nucleus accumbens), and did not significantly differ upon retest 2 h later. The availability of [11C]raclopride binding sites at baseline was 8% higher in the right striatum. Challenge with amphetamine sulfate (1 mg/kg, i.v., n=4) decreased pB by 19% in both ventral and dorsal striatum. We have earlier predicted that blockade of monoamine oxidase (MAO) should potentiate the amphetamine-evoked dopamine release, thus enhancing the displacement of [11C]raclopride binding in vivo. However, pretreatment of rats with pargyline hydrochloride (4 mg/kg, n=4; 20 mg/kg, n=4) 1 day prior to PET did not potentiate the amphetamine-evoked reduction in dopamine receptor availability within the extended striatum. We conclude that small animal PET can be used to investigate stimulant-induced dopamine release, but that the spatial resolution is insufficient to detect differences between relative changes in dorsal vs. ventral divisions of the rat striatum. Furthermore, the present results do not reveal potentiation of the amphetamine-evoked release of dopamine in rats with MAO inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.