Abstract

Over 2 years of surface current information collected in the Agulhas Current region and derived from the Doppler centroid anomalies of Envisat's advanced synthetic aperture radar (ASAR) are examined. The sources of errors and potential use of ASAR surface current velocities for oceanographic research are assessed. ASAR surface current velocities are compared to surface drifter data and merged altimetry observations. Maps of sea surface temperature are used to establish the ASAR's capacity to capture the synoptic circulation. Discrepancies between observed and predicted ASAR velocities result predominantly from inadequate wind corrections combined with radar incidence angles below 30°. Occasionally observed wind‐induced outliers cause a bias in the estimated ASAR velocities but do not affect the ability of the ASAR to systematically image regions of strong surface current flow and shear. Time‐averaged maps of ASAR‐derived surface current velocity seem able to accurately capture the position as well as the intensity of the Agulhas Current. The ability of the ASAR to pick up the smaller features of the circulation along the shelf break also shows that variability along the Agulhas Bank is of the same order of magnitude as that observed in the Agulhas retroflection. ASAR surface current velocities offer a very good complement to altimetry in regions where the mean dynamic topography is poorly resolved. The quasi‐synoptic nature of ASAR acquisitions combined with the relatively high resolution of ASAR surface current velocities also make it attractive for studies of submesoscale processes and western boundary current dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call