Abstract

The adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.

Highlights

  • Adaptation to heterogeneous environments is critically important for pathogens to successfully infect and colonize their hosts, disseminate to new hosts and cause epidemics, and survive in the absence of their host

  • To further investigate fungicide resistance trade-offs, we identified 27 single nucleotide polymorphism (SNP) significantly associated with colony growth and 26 SNPs significantly associated with the ratio of colony area in presence of azole in close proximity to the CYP51 gene encoding the target of azole fungicides [71]

  • We found that the average genetic correlation for virulence and reproduction on the elite cultivar Gene and the landrace 1011 (−0.04, SE = 0.07; 0.10, SE = 0.08, respectively) and the average genetic correlation between virulence and reproduction on the elite cultivar ArinaLr34 (0.08, SE = 0.12) were low compared to the other cultivars

Read more

Summary

Objectives

We aimed to establish a fine-scale map of genetic correlations to unravel constraints on trait evolution in host and non-host environments

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call