Abstract

Studying changing synaptic activity patterns during development provides a wealth of information on how activity-dependent processes shape synaptic connectivity. In this chapter we introduce a method that combines whole-cell electrophysiology with calcium imaging to map functional synaptic sites on the dendritic tree and follow their activity over time. The key strength of this method lies in its ability to distinguish between synaptic and non-synaptic calcium signaling by their coincidence with synaptic currents measured at the soma. Next to the required materials and protocols that are necessary to perform these experiments, we thoroughly discuss how the acquired data can be analyzed. Since this method can be employed in many neuronal systems we believe that it can be a valuable tool to study developmental changes in synaptic connectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.