Abstract
Crop yield maps are valuable for many applications in precision agriculture, but are often inaccessible to growers and researchers wishing to better understand yield determinants and improve site-specific management strategies. A method for mapping sub-field crop yields from remote sensing imagery could increase the availability of crop yield maps. A variation of the scalable crop yield mapping approach (SCYM, Lobell et al. in Remote Sensing of Environment 164:324–333, 2015) was developed and tested for estimating sub-field maize (Zea mays L.) yields at 10–30 m without the use of site-specific input data. The method was validated using harvester yield monitor records for 21 site-years for irrigated and rainfed fields in eastern Nebraska, USA. Prediction error ranged greatly across site-years, with relative RMSE scores of 10.8 to 38.5%, and R2 values of 0.003 to 0.37. Significant proportional bias was detected in the predictions, but could be corrected with a small amount of ground truth data. Crop yield prediction accuracies without calibration were suitable for some precision applications such as mapping relative yields and delineating management zones, but model improvements or calibration datasets are needed for applications requiring absolute yield estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.