Abstract
Information on the spatial distribution of soil particle-size fractions (psf) is required for a wide range of applications. Geostatistics is often used to map spatial distribution from point observations; however, for compositional data such as soil psf, conventional multivariate geostatistics are not optimal. Several solutions have been proposed, including compositional kriging and transformation to a composition followed by cokriging. These have been shown to perform differently in different situations, so that there is no procedure to choose an optimal method. To address this, two case studies of soil psf mapping were carried out using compositional kriging, log-ratio cokriging, cokriging, and additive log-ratio cokriging; and the performance of Mahalanobis distance as a criterion for choosing an optimal mapping method was tested. All methods generated very similar results. However, the compositional kriging and cokriging results were slightly more similar to each other than to the other pair, as were log-ratio cokriging and additive log-ratio cokriging. The similar results of the two methods within each pair were due to similarities of the methods themselves, for example, the same variogram models and prediction techniques, and the similar results between the two pairs were due to the mathematical relationship between original and log-ratio transformed data. Mahalanobis distance did not prove to be a good indicator for selecting an optimal method to map soil psf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.