Abstract
Soil organic carbon (SOC) has a large impact on soil quality and global climate change. It is therefore important to be able to predict SOC accurately to promote sustainable soil management. Although the synthetic aperture radar (SAR) has many advantages and has been widely used in soil science research, it has rarely been used in previous SOC mapping studies based on remote sensing images. The purpose of this study was to investigate the ability of multi-temporal Sentinel-1A data in SOC prediction, by comparing the predictive performance of random forest (RF) and boosted regression tree (BRT) models in the Heihe River Basin in northwestern China. A set of 162 topsoil (0–20 cm) samples were taken and 15 environmental variables were obtained including land use, topography, climate, and remote sensing images (optical and SAR data). Using a cross-validation procedure to evaluate the performance of the models, three statistical indices were calculated. Overall, both RF and BRT models effectively predicted SOC content, exhibiting similar performance and producing similar spatial distribution patterns of SOC. The results showed that the addition of multi-temporal Sentinel-1A images improved prediction accuracy, with the root mean squared error (RMSE), the mean absolute error (MAE) and the coefficient of determination (R2) improving by 9.0%, 8.3% and 13.5%, respectively. Furthermore, the combination of all environmental variables had the best prediction performance explaining 75% of SOC variation. The most important environmental variables explaining SOC variation were precipitation, elevation, and temperature. The multi-temporal Sentinel-1A data in RF and BRT models explained 9% and 7%, respectively. The results from our case study highlight the usefulness of multi-temporal Sentinel-1 data in SOC mapping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.