Abstract

Simple SummaryThe thermal environment experienced by animals in zoos has implications for their comfort, and ultimately welfare. In this study, we describe a simple low-cost approach to documenting one key aspect of the environment, shade, and its use by animals. We share a successive approach that can be adopted based on an organization’s capacity: Ranging from simple mapping of shade availability in enclosures that can be built upon to incorporate more advanced tracking of space use by animals and detailed assessment of shade use. Using these methods, we discovered shade availability at a zoo in a northern continental climate varied greatly across enclosures, as well as by season and time of day. We present a case study on Sichuan takin to highlight the applied potential of this approach. Relying on insights from a combination of shade and behavioral data, a shade structure was installed and then evaluated for this species. As zoos seek to create enclosures that promote positive welfare, careful consideration should be paid to the thermal environment and choices available to animals. We share these accessible methods to encourage others to evaluate shade and its use by zoo animals.For many species in zoos, particularly megafauna vulnerable to heat stress, shade is a key environmental resource. However, shade availability has received comparatively less attention than other aspects of the zoo environment. In this study, we share a simple low-cost approach that we applied to document shade availability across 33 zoo enclosures. We then combined these assessments with behavioral observations of enclosure use and shade-seeking behavior during summer months in a case study focused on Sichuan takin (Budorcas taxicolor tibetana) (n = 3), a large cold-adapted bovid. Behavioral observations were conducted before and after installation of a shade sail for the takin. Results indicated that shade availability varied widely across zoo enclosures, with the percent of shaded space ranging from 85 % to 22 % across enclosures during summer months. Shade was a dynamic resource and increased throughout the year and fluctuated across the day, with the least shade available midday. Takin showed general preferences for shaded areas near the walls of their enclosure but were observed using newly available shade from the shade sail after its installation. These accessible methods can be easily applied to assess shade within existing enclosures, evaluate enclosure modifications, and provide guidance for the design of new enclosures.

Highlights

  • Modern zoos are interested in creating environments that can enhance the welfare of individual animals

  • This case study evaluated the impact of installing a shade sail in the takin enclosure to increase shade, an enclosure modification initiated based on the results of the shade mapping data from part 1 of this study. This is the first report of the behavioral thermoregulatory response of takin to ex situ environmental conditions. We present these methods as an accessible approach to evaluating the thermal environment of zoo enclosures and to assess the corresponding behavioral responses of animals

  • We demonstrated a novel approach to quantifying thewill availability of positive shade, that promote comfort, zoos can increase the likelihood that animals experience a animal dynamic environmental that is likely impact the of several species housed in a welfare

Read more

Summary

Introduction

Modern zoos are interested in creating environments that can enhance the welfare of individual animals. Studies of thermal comfort in people and animals have traditionally been derived from thermophysiological models. These models predict body temperature by describing physiological responses, such as metabolic changes, sweating, and shivering, in response to environmental conditions [17]. Building from these models, the concept of the thermoneutral zone has been used to describe the range of temperatures at which an animal can maintain a stable core body temperature without requiring metabolic changes or evaporative heat loss [18]. Thermal comfort models have traditionally assumed a passive response by individuals and steady-state environmental conditions [24]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call