Abstract
The mechanism of homologous recombination has been studied previously in brome mosaic virus (BMV), a tricomponent, positive-stranded RNA virus of plants, by using artificial sequences (reviewed by J. J. BujarskiP. D. Nagy (1996).Semin. Virol.7, 363–372). Here we extend these studies over BMV-derived sequences to obtain clues on prediction of homologous recombination hot spots. First, mismatch mutations, which reduced the AU content, were introduced into the common 60-nt recombination hot-spot sequence, either in the RNA2 or in both RNA2RNA3 components. This decreased the frequency of targeted homologous RNA2/RNA3 recombinationchanged the distribution of junction sites. Second, several short BMV RNA1- or RNA2-derived sequences were introduced into the RNA3 component,homologous recombination activity of these sequences was compared with that observed for previously characterized artificial sequences. Third, sequences at homologous recombinant junctions were compared among a large number of targetednontargeted recombinants. All these studies revealed several factors important for homologous recombination including the length of sequence identity, the extent of sequence identity, the AU content of the common sequences, the relative position of the AU-rich segmentvsa GC-rich segment,the presence of GC-rich sequences. Based on this novel model, we suggest that recombination hot spots can be predicted by means of RNA sequence analysis. In addition, we show that recombination can occur between positivenegative strands of BMV RNAs. This provides further clues toward the mechanism of recombination processes in BMV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.