Abstract
Atomistic molecular modelling of polymeric hybrid materials becomes more relevant with continually increasing computing power. Currently, the simulations are still limited to medium size atomistic models, although polymer dynamics demand large polymer chain models and time scales. Coarse-graining of atomistic polymer models is aiming at the transfer of structure related properties from fully atomistic models to bead representations having less degrees of freedom but allowing the increase of model size and time scales. Key for a successful bead representation is the mapping scheme. Although there are a lot of meaningful approaches for polymer mapping schemes available (e. g. mapping one repeat unit to one bead), the successful development is not always a trivial task and every approach has advantages and shortcomings. Even for the rather “simple” polystyrene at least seven different and meaningful mapping scheme approaches are known (H. A. Karimi-Varzaneh, N. F. A. van der Vegt, F. Müller-Plathe, P. Carbone, ChemPhysChem2012, 13, 3428.).Here, we show the importance of the mapping scheme for a more sophisticated hybrid material substance and evaluate its quality, i. e. speedup and atomistic model representation by the coarse-grained models. The degree of coarse-graining of different mapping schemes is discussed. The coarse-grained models are evaluated according to their glass transition analysis in comparison to the full atomistic glass transition analysis. It is shown, that the choice of the mapping scheme becomes more crucial with increasing monomer complexity. Finally, the trade-off between efficiency, i. e. time-saving with speed-up during simulation vs. time-loss for coarse-grained force field parameter development, and quality of results, i. e. comparability with fully atomistic models, has to be considered carefully.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.