Abstract

The applicability of high spatial resolution hyperspectral data and small-footprint Light Detection and Ranging (lidar) data to map and describe sagebrush in a semi-arid shrub steppe rangeland is demonstrated. Hyperspectral processing utilized a spectral subset (605 nm to 984 nm) of the reflectance data to classify sagebrush presence to an overall accuracy of 74 percent. With the inclusion of co-registered lidar data, this accuracy increased to 89 percent. Furthermore, lidar data were utilized to generate stand specific descriptive information in areas of sagebrush presence and sagebrush absence. The methods and results of this study lay the framework for utilizing co-registered hyperspectral and lidar data to describe semi-arid shrubs in greater detail than would be feasible using either dataset independently or by most ground based surveys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.