Abstract

The objective of the study was to identify brain structures that mediate reward as evidenced by positive reinforcing effects of stimuli on behavior. Testing by intracerebral self-stimulation enabled monkeys to inform whether activation of ~2900 sites in 74 structures of 4 sensorimotor pathways and 4 modulatory loop pathways was positive, negative or neutral. Stimulation was rewarding at 30% of sites, negative at 17%, neutral at 52%. Virtually all (99%) structures yielded some positive or negative sites, suggesting a ubiquitous distribution of pathways transmitting valence information. Mapping of sites to structures with dense versus sparse dopaminergic (DA) or noradrenergic (NA) innervation showed that stimulation of DA-pathways was rewarding or neutral. Stimulation of NA-pathways was not rewarding. Stimulation of association areas was generally rewarding; stimulation of purely sensory or motor structures was generally negative. Reward related more to structures' sensorimotor function than to density of DA-innervation. Stimulation of basal ganglia loop pathways was rewarding except in lateral globus pallidus, an inhibitory structure in the negative feedback loop; stimulation of the cerebellar loop was rewarding in anterior vermis and the spinocerebellar pathway; and stimulation of the hippocampal CA1 loop was rewarding. While most positive sites were in the DA reward system, numerous sites in sparsely DA-innervated posterior cingulate and parietal cortices may represent a separate reward system. DA-density represents concentrations of plastic synapses that mediate acquisition of new synaptic connections. DA-sparse areas may represent innate, genetically programmed reward-associated pathways. Implications of findings in regard to response habituation and addiction are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call