Abstract

The growth of artificial intelligence in promoting healthcare is rapidly progressing. Notwithstanding its promising nature, however, AI in healthcare embodies certain ethical challenges as well. This research aims to delineate the most influential elements of scientific research on AI ethics in healthcare by conducting bibliometric, social network analysis, and cluster-based content analysis of scientific articles. Not only did the bibliometric analysis identify the most influential authors, countries, institutions, sources, and documents, but it also recognized four ethical concerns associated with 12 medical issues. These ethical categories are composed of normative, meta-ethics, epistemological and medical practice. The content analysis complemented this list of ethical categories and distinguished seven more ethical categories: ethics of relationships, medico-legal concerns, ethics of robots, ethics of ambient intelligence, patients' rights, physicians’ rights, and ethics of predictive analytics. This analysis likewise identified 40 general research gaps in the literature and plausible future research strands. This analysis furthers conversations on the ethics of AI and associated emerging technologies such as nanotech and biotech in healthcare, hence, advances convergence research on the ethics of AI in healthcare. Practically, this research will provide a map for policymakers and AI engineers and scientists on what dimensions of AI-based medical interventions require stricter policies and guidelines and robust ethical design and development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.