Abstract

Low-temperature germination is one of the major determinants for stable stand establishment in the rice direct seeding method in temperate regions and at high altitude areas. Quantitative trait loci (QTL) controlling low-temperature germinability in rice were identified using 96 introgression lines (ILs) derived from a cross between Oryza rufipogon and the Korean japonica cultivar, 'Hwaseongbyeo'. The germination rate at <TEX>$15^{\circ}C$</TEX> was measured to represent low-temperature germination and used for QTL analysis. The germination rate at <TEX>$15^{\circ}C$</TEX> for 7 days of Oryza rufipogon and Hwaseongbyeo was 93.3 and 28.7%, respectively, and that of progenies ranged from 0 to 48%. A linkage map was constructed using 135 simple sequence repeat (SSR) markers. Five putative QTLs associated with low-temperature germination were detected on chromosomes 1, 3, 4, 10 and 11. The QTL, qltg10 on chromosome 10 accounted for 19.2% of the total phenotypic variation for low-temperature germinability. Four additional QTL, accounted for 10.4 - 15.1% of the total phenotypic variation. The O. rufipogon alleles in all detected QTLs loci increased the low-temperature germination rate. No QTL associated with low temperature germinability has been detected near the qltg10 QTL in this study suggesting that qltg10 is a new QTL. The locus, qltg10 is of particular interest because of its independence from undesirable height and maturity effects. The DNA markers linked to the QTL for low temperature germinability would be useful in selecting lines with enhanced low temperature germinability in rice breeding program.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call