Abstract

BackgroundMarek's disease (MD) is a T-cell lymphoma of chickens caused by the Marek's disease virus (MDV), an oncogenic avian herpesvirus. MD is a major cause of economic loss to the poultry industry and the most serious and persistent infectious disease concern. A full-sib intercross population, consisting of five independent families was generated by crossing and repeated intercrossing of two partially inbred commercial White Leghorn layer lines known to differ in genetic resistance to MD. At the F6 generation, a total of 1615 chicks were produced (98 to 248 per family) and phenotyped for MD resistance measured as survival time in days after challenge with a very virulent plus (vv+) strain of MDV.ResultsQTL affecting MD resistance were identified by selective DNA pooling using a panel of 15 SNPs and 217 microsatellite markers. Since MHC blood type (BT) is known to affect MD resistance, a total of 18 independent pool pairs were constructed according to family × BT combination, with some combinations represented twice for technical reasons. Twenty-one QTL regions (QTLR) affecting post-challenge survival time were identified, distributed among 11 chromosomes (GGA1, 2, 3, 4, 5, 8, 9, 15, 18, 26 and Z), with about two-thirds of the MD resistance alleles derived from the more MD resistant parental line. Eight of the QTLR associated with MD resistance, were previously identified in a backcross (BC) mapping study with the same parental lines. Of these, 7 originated from the more resistant line, and one from the less resistant line.ConclusionThere was considerable evidence suggesting that MD resistance alleles tend to be recessive. The width of the QTLR for these QTL appeared to be reduced about two-fold in the F6 as compared to that found in the previous BC study. These results provide a firm basis for high-resolution linkage disequilibrium mapping and positional cloning of the resistance genes.

Highlights

  • Marek's disease (MD) is a T-cell lymphoma of chickens caused by the Marek's disease virus (MDV), an oncogenic avian herpesvirus

  • If the resistance alleles are recessive and at low to moderate allele frequencies, this would explain the slow response to selection for increased resistance, and enhances the need for mapping in order to increase the effectiveness of selection on these QTL within the pure lines

  • Because most chickens used for commercial egg or meat production are crosses between 2 to 4 lines, it will be important that the recessive resistance alleles are present in all pure lines, such that the cross will be homozygous for the resistance QTL

Read more

Summary

Introduction

Marek's disease (MD) is a T-cell lymphoma of chickens caused by the Marek's disease virus (MDV), an oncogenic avian herpesvirus. It is anticipated that identification of QTL for MD resistance will eventually allow marker-assisted selection on an individual bird level, without need for routine challenge This will greatly enhance the accuracy of selection, and reduce costs by orders of magnitude. QTL mapping, in conjunction with positional comparative cloning, gene expression [7,8], and protein-protein interaction studies [9,10] could provide a platform for identification of the genes underlying the QTL The identification of these genes will provide insight on disease pathways and resistance mechanisms, leading to more effective vaccines or other control strategies, and even more effective selection schemes based on gene-assisted selection [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call