Abstract

Purpose:Tensor-valued diffusion encoding provides more specific information than conventional diffusion-weighted imaging (DWI), but has mainly been applied in neuroimaging studies. This study aimed to assess its potential for the imaging of prostate cancer (PCa).Methods:Seventeen patients with histologically proven PCa were enrolled. DWI of the prostate was performed with linear and spherical tensor encoding using a maximal b-value of 1.5 ms/μm2 and a voxel size of 3 × 3 × 4 mm3. The gamma-distribution model was used to estimate the mean diffusivity (MD), the isotropic kurtosis (MKI), and the anisotropic kurtosis (MKA). Regions of interest were placed in MR-defined cancerous tissues, as well as in apparently healthy tissues in the peripheral and transitional zones (PZs and TZs).Results:DWI with linear and spherical encoding yielded different image contrasts at high b-values, which enabled the estimation of MKA and MKI. Compared with healthy tissue (PZs and TZs combined) the cancers displayed a significantly lower MD (P < .05), higher MKI (P < 10−5), and lower MKA (P < .05). Compared with the TZ, tissue in the PZ showed lower MD (P < 10−3) and higher MKA (P < 10−3). No significant differences were found between cancers of different Gleason scores, possibly because of the limited sample size.Conclusion:Tensor-valued diffusion encoding enabled mapping of MKA and MKI in the prostate. The elevated MKI in PCa compared with normal tissues suggests an elevated heterogeneity in the cancers. Increased in-plane resolution could improve tumor delineation in future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call