Abstract

FPGAs can provide application-specific acceleration for computationally demanding tasks. However, they are rarely considered general-purpose platforms due to low productivity of software development and long reconfiguration time. These problems can be mitigated by implementing a coarser overlay atop the FPGA fabric. Combining this approach with partial reconfiguration allows for the modification of individual processing elements (PEs) of the virtual architecture without altering the rest of the system. Module relocation can be used to share implementation details between functionally equivalent PEs that use identical sets of resources, thus eliminating redundant placement and routing runs. Proper floorplanning is crucial for virtual Coarse-Grained Reconfigurable Architectures (CGRAs) with relocatable PEs considering their tendency to use nearest-neighbor connection patterns. It requires solving two problems—finding identical regions in the FPGA fabric and assigning individual partitions to certain locations. This article presents minor improvements of a state-of-the-art solution for the first and proposes a novel technique for solving the other. The proposed automated floorplanner uses modified breadth-first search with direction-based penalties to create initial floorplan consistent with geometry of logical array, then improves the result with 2-opt local optimization. Compared to simulated annealing solutions, the proposed approach allows for the reduction in the floorplanning time by two to three orders of magnitude without compromising the quality of the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call