Abstract

We present a mapping of the binary prefer-opposite de Bruijn sequence of order n onto the binary prefer-one de Bruijn sequence of order \(n-1\). The mapping is based on the differentiation operator \(D(\langle {b_1,\ldots ,b_l}\rangle ) = \langle b_2-b_1, b_3-b_2,\ldots , b_{l}-b_{l-1} \rangle \) where bit subtraction is modulo two. We show that if we take the prefer-opposite sequence \(\langle {b_1,b_2,\ldots ,b_{2^n}}\rangle \), apply D to get the sequence \(\langle {\hat{b}_1, \ldots , \hat{b}_{2^n-1}}\rangle \) and drop all the bits \(\hat{b}_i\) such that \(\langle {\hat{b}_i,\ldots ,\hat{b}_{i+n-1}}\rangle \) is a substring of \(\langle {\hat{b}_1,\ldots ,\hat{b}_{i+n-2}}\rangle \), we get the prefer-one de Bruijn sequence of order \(n-1\).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.