Abstract
In this tutorial review, we present the use of electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) spectroscopy for surface plasmon mapping within metallic nanoparticles. We put a special emphasis on particles that are much smaller than the wavelength of visible light. We start by introducing the concept of surface plasmons, keeping the formalism as simple as possible by focusing on the quasi-static approximation. We then make a link between optical cross-sections, EELS and CL probabilities, and the surface plasmons' physical properties. A short survey of simulation tools is given. We then present typical experimental set-ups and describe some problems frequently encountered with spectrometers. Experimental conditions for improved signal to noise ratio are discussed. Analysis techniques are discussed, especially those related to the spectral imaging mode, which is extremely useful in EELS and CL experiments. Finally, the specific range of applications of EELS and CL with respect to other nano-optic techniques is discussed, as well as the strengths and weaknesses of EELS as compared with CL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.