Abstract

Abstract Magnetic resonance imaging (MRI) is used to quantify in situ the recovery of crude oil from a strongly oil-wet microporous limestone core-plug. We demonstrate the capability of low-field MRI to continuously monitor oil saturation distribution by obtaining a series of spatially resolved transverse relaxation time ( T 2 ) distributions using the robust spin echo single point image (SESPI) profiling method to obtain T2 maps with a temporal resolution of 45 min. These T2 maps are shown to provide comparable data to nuclear magnetic resonance (NMR) well-logs. The low injection rate of 1.4 × 10 − 3 cm 3 s − 1 (equivalent to an interstitial velocity of 1 ft day−1 in the formation) allowed a large number of T2 maps to be acquired during the flood. Fluid-phase discrimination is achieved here in the T2 dimension; the brine relaxation time is reduced by addition of paramagnetic manganese. Some manganese is lost through adsorption on the limestone surface, but sufficient relaxation contrast is obtained to position an unambiguous oil/brine T2 cut-off. The spatial distributions of both the brine and oil are therefore determined simultaneously and independently. Capillary end effects are observed in the short core-plug due to the difference in wettability and permeability between the plug faces and the core-holder end-caps. The inclusion of the spatial dimension in the experiment allows a region of the plug, unaffected by end effects, to be considered representative of behavior in the reservoir. Overall, we highlight the importance of spatial resolution in laboratory-scale core analysis and demonstrate the capability of low-field MRI spectrometers to continuously monitor oil recovery experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.