Abstract

Monitoring of wave packet dynamics at conical intersections by time- and frequency-resolved fluorescence spectroscopy has been investigated theoretically for a three-state two-mode model of a conical intersection coupled to a dissipative environment. The ideal and the actually measurable time- and frequency-gated fluorescence spectra are accurately and efficiently simulated by combining the hierarchy equations-of-motion method for dissipative quantum dynamics with the methodology of the equation-of-motion phase-matching approach for the calculation of spectroscopic signals. It is shown that time- and frequency-resolved fluorescence spectra reveal essential aspects of the wave packet dynamics at conical intersections and the effects of environment-induced dissipation. The results of the present work indicate that fluorescence up-conversion spectroscopy with femtosecond time resolution is an efficient tool for the characterization of ultrafast dynamics at conical intersections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.