Abstract
The Wnt4 gene encodes a secreted signaling molecule controlling the development of several organs, such as the kidney, adrenal gland, ovary, mammary gland and pituitary gland. It is thought to act in the embryonic kidney as an auto-inducer of nephrogenesis controlling mesenchyme-to-epithelium transition, and Wnt4-deficient mice die soon after birth, probably of kidney failure. Given the requirement for Wnt4 signaling in the control of organogenesis, the targeting of Cre recombinase under the control of the Wnt4 promoter would provide a valuable tool for fate mapping and functional genomics. We report here on the generation and characterization of a Wnt4 EGFPCre knock-in allele where the EGFPCre fusion cDNA and Neo selection cassette were targeted into the Wnt4 locus. EGFP-derived fluorescence was observed in the pretubular aggregates of the E14.5 embryonic kidney that normally express Wnt4 mRNA. Characterization of the pattern of recombination of the floxed Rosa26 LacZ reporter with the Wnt4 EGFPCre allele revealed that in addition to the embryonic kidney, reporter-derived staining was observed in the embryonic gonad, spinal cord, lung and adrenal gland, i.e. the sites of Wnt4 gene expression. Time-lapse fate mapping of the Wnt4 EGFPCre -activated yellow fluorescent protein (YFP) from the Rosa26 locus in organ culture revealed that the cells that had expressed the Wnt4 gene contributed to the nephrons, some of the cells around the stalk of the developing ureter and also certain presumptive medullary stromal cells. Moreover, the time-lapse movies suggested that the first few pretubular cell aggregates may not mature into nephrons but instead appear to disintegrate. In association with this, Rosa26 YFP -positive stromal cells emerge around these disintegrating structures. Such cells may be transient, since their derivatives are neither detected later in the more mature kidney nor is there an overlap of the Wnt4 EGFPCre ; Rosa26 LacZ -marked cells with those of the endothelial cells, the smooth muscle cells or the macrophages. The Wnt4 EGFPCre allele provides a useful new tool for conditional mutagenesis and provides the first time-lapse-based map of the fate of nephron precursor cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.