Abstract

Here we find a mapping onto the Pauli equation of the first two balance equations derived from the classical Boltzmann equation. The essence of this mapping, which we previously used to obtain the particular case of the Sturm–Liouville operator known as Schrödinger's equation, consists of applying a Fourier transform to the momentum coordinate of the distribution function. This procedure introduces a natural parameter η with units of angular momentum. The main difference between the two cases is the conditions imposed on the probability distribution function, a difference most clearly understood at the level of the hydrodynamic equations generated in the first steps of the mapping. The case leading to the Sturm–Liouville operator corresponds to an irrotational flow, while here the ansatz leading to the Pauli equation corresponds to a fluid with non-zero vorticity. In the context of fluid dynamics, the magnitude of the angular momentum associated with the vorticity is η/2. To perform the mapping we follow the standard technique common in hydrodynamic problems, namely writing the Lagrangian for the Euler equations with the corresponding constraints expressed in terms of the Clebsch variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.