Abstract

We report the nanoscale quantification of strain in GaAs/GaAsP core-shell nanowires. By tracking the shifting of higher-order Laue zone (HOLZ) lines in convergent beam electron diffraction patterns, we observe unique variations in HOLZ line separation along different facets of the core-shell structure, demonstrating the nonuniform strain fields created by the heterointerface. Furthermore, through the use of continuum mechanical modeling and Bloch wave analysis we calculate expected HOLZ line shift behavior, which are directly matched to experimental results. This comparison demonstrates both the power of electron microscopy as a platform for nanoscale strain characterization and the reliability of continuum models to accurately calculate complex strain fields in nanoscale systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call