Abstract
Underneath the ear skin there are rich vascular network and sensory nerve branches. Hence, the 3D mapping of auricular electrophysiological signals can provide new biomedical perspectives. However, it is still extremely challenging for current sensing techniques to cover the entire ultra-curved auricle. Here, a 3D graphene-based ear-conformable sensing device with embedded and distributed 3D electrodes for full-auricle physiological monitoring is reported. As a proof-of-concept, spatiotemporal auricular electrical skin resistance (AESR) mapping is demonstrated for the first time, and human subject-specific AESR distributions are observed. From the data of more than 30ears (both right and left ears), the auricular region-specific AESR changes after cycling exercise are observed in 98% of the tests and are clustered into fourgroups via machine learning-based data analyses. Correlations of AESR with heart rate and blood pressure are also studied. This 3D electronic platform and AESR-based biometrical findings show promising biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.