Abstract
Objective. The ideal modality for generating sensation in sensorimotor brain computer interfaces (BCI) has not been determined. Here we report the feasibility of using a high-density ‘mini’-electrocorticography (mECoG) grid in a somatosensory BCI system. Approach. Thirteen subjects with intractable epilepsy underwent standard clinical implantation of subdural electrodes for the purpose of seizure localization. An additional high-density mECoG grid was placed (Adtech, 8 by 8, 1.2 mm exposed, 3 mm center-to-center spacing) over the hand area of primary somatosensory cortex. Following implantation, cortical mapping was performed with stimulation parameters of frequency: 50 Hz, pulse-width: 250 µs, pulse duration: 4 s, polarity: alternating, and current that ranged from 0.5 mA to 12 mA at the discretion of the epileptologist. Location of the evoked sensory percepts was recorded along with a description of the sensation. The hand was partitioned into 48 distinct boxes. A box was included if sensation was felt anywhere within the box. Main results. The percentage of the hand covered was 63.9% (± 34.4%) (mean ± s.d.). Mean redundancy, measured as electrode pairs stimulating the same box, was 1.9 (± 2.2) electrodes per box; and mean resolution, measured as boxes included per electrode pair stimulation, was 11.4 (± 13.7) boxes with 8.1 (± 10.7) boxes in the digits and 3.4 (± 6.0) boxes in the palm. Functional utility of the system was assessed by quantifying usable percepts. Under the strictest classification, ‘dermatomally exclusive’ percepts, the mean was 2.8 usable percepts per grid. Allowing ‘perceptually unique’ percepts at the same anatomical location, the mean was 5.5 usable percepts per grid. Significance. Compared to the small area of coverage and redundancy of a microelectrode system, or the poor resolution of a standard ECoG grid, a mECoG is likely the best modality for a somatosensory BCI system with good coverage of the hand and minimal redundancy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.