Abstract

The rapid development of technologies and applications in recent years poses high demands and challenges for high-performance computing. Because of their competitive performance/price ratio, heterogeneous many-core architectures are widely used in high-performance computing areas. GPU and Xeon Phi are two popular general-purpose many-core accelerators. In this paper, we demonstrate how heterogeneous many-core architectures, powered by multi-core CPUs, CUDA-enabled GPUs and Xeon Phis can be used as an efficient computational platform to accelerate popular option pricing algorithms. In order to make full use of the compute power of this architecture, we have used a hybrid computing model which consists of two types of data parallelism: worker level and device level. The worker level data parallelism uses a distributed computing infrastructure for task distribution, while the device level data parallelism uses both the multi-core CPUs and many-core accelerators for fast option pricing calculation. Experiments show that our implementations achieve good performance and scalability on this architecture and also outperform other state-of-the-art GPU-based solutions for Monte Carlo European/American option pricing and BSDE European option pricing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.