Abstract
High-resolution mapping of magnetic resonance imaging (MRI)'s transverse relaxation time (T2 ) can benefit many clinical applications by offering improved anatomic details, enhancing the ability to probe tissues' microarchitecture, and facilitating the identification of early pathology. Increasing spatial resolutions, however, decreases data's signal-to-noise ratio (SNR), particularly at clinical scan times. This impairs imaging quality, and the accuracy of subsequent radiological interpretation. Recently, principal component analysis (PCA) was employed for denoising diffusion-weighted MR images and was shown to be effective for improving parameter estimation in multiexponential relaxometry. This study combines the Marchenko-Pastur PCA (MP-PCA) signal model with the echo modulation curve (EMC) algorithm for denoising multiecho spin-echo (MESE) MRI data and improving the precision of EMC-generated single T2 relaxation maps. The denoising technique was validated on simulations, phantom scans, and in vivo brain and knee data. MESE scans were performed on a 3-T Siemens scanner. The acquired images were denoised using the MP-PCA algorithm and were then provided as input for the EMC T2 -fitting algorithm. Quantitative analysis of the denoising quality included comparing the standard deviation and coefficient of variation of T2 values, along with gold standard SNR estimation of the phantom scans. The presented denoising technique shows an increase in T2 maps' precision and SNR, while successfully preserving the morphological features of the tissue. Employing MP-PCA denoising as a preprocessing step decreases the noise-related variability of T2 maps produced by the EMC algorithm and thus increases their precision. The proposed method can be useful for a wide range of clinical applications by facilitating earlier detection of pathologies and improving the accuracy of patients' follow-up.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.