Abstract

Macrophage elastase (MMP-12) is a member of the family of matrix metalloproteinases (MMPs) and is active against multiple extracellular protein substrates such as elastin. Its effect on elastin is central to emphysema in the lung and photoaging of skin. Its expression in the skin increases on photodamaged skin and upon aging. Detecting and characterizing peptides cleaved in elastin, therefore, helps to understand such degradative disease processes in the skin and is also needed to assist in the rational design of agents that specifically inhibit the degradation. In this study, cleavage sites of MMP-12 in human skin elastin were extensively investigated. The peptides formed as a result of cleavages by this enzyme in the human skin elastin were characterized using mass spectrometry. A total of 41 peptides ranging from 4 to 41 amino acids were identified and 36 cleavage sites were determined. Amino acids encoded by exons 5, 6, 26, 28–31 were particularly susceptible to cleavages by MMP-12 and none or very few cleavages were detected from domains encoded by the remaining exons. The amino acid preferences of the different subsites on the catalytic domain of MMP-12 were analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call